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Abstract: Coal is a material which has many features deciding about its quality. Among them, the 
decisive ones are mainly ash contents, sulfur contents and combustion heat. The paper presents the 
investigation of coal characteristics of three selected coal types in the context of their energetic value. For 
this purpose samples were collected from three different Polish mines: coal types 31, 34.2 and 35 (Polish 
classification of coals). Each of these materials was separated into particle size fractions (9 fractions) and 
then into 8 density fractions by separation in heavy liquids. For each size-density fractions obtained in 
this way, chemical analyses were performed which allowed for determination of such features as 
combustion heat, sulfur contents, ash contents, volatile parts contents and analytical moisture. Altogether, 
seven dimensions of grained material characteristics were obtained. The data prepared in this way was 
subsequently analyzed for correlation with the purpose of determining significant relations between 
investigated features. It was stated that the most correlated coal features are density, combustion heat, ash 
contents and volatile parts contents. 

For multidimensional analysis and identification of coal type, the modern image visualization 
technique, the Observational Tunnels Method, was applied. After performing seven-dimensional analysis 
aimed at the proper recognition of coal type, it was decided to determine the minimum amount of random 
variables, which describe a particular material in order to identify its type. It was stated that the crucial 
coal identification parameter is “analytical moisture”. Due to existing correlation between individual 
features, three of them were selected for testing: analytical moisture, sulfur contents and volatile parts 
contents. On the basis of the obtained images, it was stated that it was possible to obtain a view with the 
data concerning each type of coal being located in other part of the space. Subsequently, it was checked if 
a similar result is possible when the parameter “volatile parts contents” is replaced with highly correlated 
parameters “combustion heat” and “ash contents”. In both cases the exchange of these variables did not 
produce good enough results. This can be explained by a different scale of empirical data making it 
impossible to obtain a clear multidimensional image for which all three types of coal would be located in 
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other parts of space. However, it was proved that the modern graphical and computer methods can be 
successfully applied to identify the types of particulate materials.  

Keywords: multidimensional statistical analysis, observational tunnels method, coal, image visualization, 
energetic materials  

Introduction 

Coal as energetic material is characterized by multiple parameters determining its 
quality. Depending on the studied type of coal (energetic, coking or semi-coking), 
these parameters differ significantly and allow for identifying the type of coal on the 
basis of its characteristics. In the paper a wide analysis of coals from three selected 
mines located in the Upper Silesia is carried out. They included coals types 31, 34.2 
and 35 (according to Polish classification of coals). To evaluate their quality correctly, 
it is necessary to conduct the multidimensional statistical analysis. There are many 
techniques of such analysis, including:  
 multidimensional distribution functions of random vector X (Lyman, 1993; 

Niedoba, 2009; 2011; Olejnik et al., 2010; Niedoba and Surowiak, 2012), where X 
is the vector describing coal properties, 

 multidimensional regressive equations with the analysis of matrix coefficients of 
linear correlation and partial correlation between individual coal features (Niedoba, 
2013; Tumidajski and Saramak, 2009), 

 factor analysis (Stanisz, 2007; Tumidajski and Saramak, 2009), 
 other methods including visualization by observational tunnels method (Jamroz, 

2001), parallel coordinates and visualization of relations between multidimensional 
blocks (Jamroz, 2009). 
The multidimensional distributions of vector X treated as random vector and their 

practical applications are widely described in the literature and will not be the subject 
of this paper. The other methods listed above are connected to some extent with the 
contents of this paper. 

To carry out analyses for more than 3 dimensions, it is suitable to apply modern 
visualization methods which allow simultaneous analysis of many features of grained 
materials. One of such methods is observational tunnels method which was applied in 
the paper. These methods are becoming more and more useful in modern applications, 
which is reflected in many papers (Aldrich, 1998; Assa et al., 1997; 1999; Chatterjee 
et al., 1993; Chou et al., 1999; Cook et al., 1995; Heike, 2000; Hurley and Buja, 1990; 
Kim et al., 2000; Kraaijveld et al., 1995; Li et al., 2000). The observational tunnels 
method is connected with existing relations between individual coordinates of vector 
X (where X represents individual coal features). However, while the classical analysis 
of correlation is based on calculating the individual partial correlation coefficients 
without considering other features, the observational tunnels method considers 
projections of all coordinates taken together, giving a graphical image as a result. The 
competent change of the viewpoint gives the possibility of obtaining a view based on 



Application of the Observational Tunnels Method 187 

which it is possible to identify the type of coal and information concerning differences 
between investigated materials. It also allows to select features which decide about the 
type of coal the investigated material is to be qualified for.  

The matrices of linear coefficients and partial correlations are usually connected 
with existing linear models of relations between researched random variables of vector 
X. The coefficients of linear correlation are determined for pairs of random variables 
totally irrespective of other variables. The partial correlation coefficients are 
determined on the basis of the matrix of coefficients of linear correlation taking the 
role of other variables in certain equation of linear regression into consideration. In the 
case of analysis of three random variables from which one is treated as a dependent 
variable and two others as independent ones, it leads to determination of correlation 
coefficients for projections of points parallel to regressive plane. It allows to determine 
the hierarchy (power of influence) of relations between variables in researched system. 
On the basis of matrix of linear coefficients of correlation the factor analysis can be 
performed which allows for grouping the existing variables into the so-called factors 
representing joint influences of variables according to the results of investigated 
processes. Consequently, some sort of classification must be provided. 

This paper also presents the methods of visualization of multidimensional data 
which make it possible to draw comparisons between the investigated data sets and 
suggest possibilities of their classification. They are a sort of continuation and 
development of the methods discussed above.  

Observational tunnels method 

The theoretical underpinnings of the Observational Tunnels Method were described in 
a paper by Jamroz (2001). Intuitively, it may be said that the method of observational 
tunnels makes use of a parallel projection with a local orthogonal projection of an 
extent limited by the maximal radius of the tunnel. This solution makes it possible to 
observe selected parts of space containing important information, which is not 
possible in the case of orthogonal projection. The method of projection used in this 
paper is roughly presented in Fig. 1. The observational plane P will be used as a 
screen through which any object placed in space X will be viewed. This observational 
plane PX is defined as: P=(w,{p1,p2}), where: 

  1 2 1 2 1 1 2 2,{ , } { : , , such that }
def

w p p x X F x w p p           ,  (1) 

X is any n -dimensional (n ≥ 3) vector space, over an F field of real numbers, with a 
scalar product. 

Vector w will indicate the position of the screen midpoint, whereas p1,p2 will 
indicate its coordinates. Let us assume for the moment that the space X is 
3-dimensional (an example assuming a space with more dimensions would be more 
difficult to conceive) and that observational plane P is 1-dimensional (i.e. it is possible 
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to observe the pertinent reality not through a segment of 2-dimensional plane but 
through a segment of a line). Additionally, let us take vector r, being the proper 
direction of projection onto the observational plane P (The proper direction of 
projection r onto the observational plane P=(w,{p1,p2}) is defined as any vector rX 
if vectors {p1, p2, r} are an orthogonal system). Let’s determine ka,r (i.e. a line parallel 
to r and passing through a) for observed point a. As shown in Fig. 1, the line ka,r need 
not have common points with P. However, ka,r always has one common point with 
hypersurface S containing P and being orthogonal to r. (the hypersurface S(s,d), 
anchored in sX and directed towards dX is defined as:  

  ( , ) : ( , ) 0
def

s dS x X x s d    ).   (2) 

  

Fig. 1. Presentation of the rules of projection on plane P in the observational tunnels method 
A line parallel to r and passing through a does not have to have common points with P. However, it 

always has exactly one common point with hypersurface S containing P and being orthogonal to r. In the 
above mentioned case only point a2 will be visible using observational plane P. 

In practice, some points could be viewed only at some orientations of observational 
plane P . This implies that in the majority of cases, when viewing a set of points using 
observational plane P, nothing will be seen. In order to avoid such situation, let us 
assume that the points visible on observational plane P do not only include points 
situated on lines parallel to r and passing through P, but also the points which are 
situated on lines parallel to r and passing through S (i.e. the hypersurface containing P 
and orthogonal to r) within a smaller distance from observational plane P than a 
certain fixed value. This distance for observed point a will be represented by vector ba 
called the tunnel radius:  

 ba = r + a – w – 1p1 – 2p2,  (3) 
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where: 

 
( , )

( , )
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 , 1
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( , )
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r a w p

p p

  
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2 2

( , )

( , )

r a w p

p p

  
 .   (4) 

In Eq. 4 r  X denotes a proper direction of projection onto observational 
plane P. 

In the case presented in Fig. 2, at the point e of observational plane P, all 
points situated in the tunnel whose intersection is a segment of and which is 
spreading along r will be visible. However, generally, at the point e on the 
observational plane P, all points situated in the tunnel whose intersection is n-3 
dimensional sphere and spreading along the direction of projection r will be 
visible.  

 

Fig. 2. Way of choosing observational tunnel T 
Tunnel T for point e is shown. (The area hatched with horizontal lines). All points that  

belong to tunnel T will be visible at point e of observational plane P 

The algorithm below should be followed in order to draw the projection of 
observed point a consistently with the direction of projection r onto observational 
plane P = (w,{p1,p2}): 
1. the distance of projection of observed point a is to be calculated using the formula:  

  = (w - a,r)/(r, r)   (5) 

2. the position of the projection (i.e. the pair 1, 2  F) of observed point a is to be 
calculated using the formula:  

 1=(r + a – w,p1)/(p1, p1), 2=(r + a - w,p2)/(p2, p2)   (6) 

3. the tunnel radius ba of point a is to be calculated using the definition (3)  
4. at this point it should be verified whether the scalar product (ba,ba) is lower than 

the maximum tunnel radius determined at a given time and whether the distance of 
the projection of observed point a is shorter than the maximum range of view 
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determined at a given time. If this is the case, then one should draw a point on 
observational plane P=(w,{p1,p2}) in the position of coordinates (1,2), otherwise 
the point should not be drawn.  
The scalar product is to be calculated using the formula:  

  (x, y) =
1

n

i i
i

x y

 ,   (7) 

where: x = (x1, x2,…, xn), y = (y1,, y2,…yn), n - number of dimensions, n  3.  

Experimental 

Three types of coal, types 31 (energetic coal), 34.2 (semi-coking coal) and 35 (coking 
coal) in the Polish classification were used in the investigation. They originated from 
three various Polish coal mines and all of them were initially screened on a set of 
sieves of the following sizes: –1.00, –3.15, –6.30, –8.00, –10.00, –12,50, –14.00,  
–16.00 and –20.00 mm. Then, the size fractions were additionally separated into 
density fractions by separation in dense media using zinc chloride aqueous solution of 
various densities (1.3, 1.4, 1.5, 1.6, 1.7, 1.8 and 1.9 g/cm3). The fractions were used as 
a basis for further consideration and additional coal features were determined by 
means of chemical analysis. For each density-size fraction such parameters as 
combustion heat, ash contents, sulfur contents, volatile parts contents and analytical 
moisture were determined, making up, together with mass of these fractions, seven 
various features for each coal. The examples of such data were presented in tables 1–3 
showing the data for size fractions 1.00–3.15 mm for each type of coal.  

Table 1. Data for size fraction 1.00–3.15 mm – coal, type 31 

Density 
[Mg/m3] 

Mass 
[g] 

Combustion 
heat [cal] 

Ash contents 
[%] 

Sulfur contents 
[%] 

Volatile parts 
contents 

Va 

Analytical 
moisture Wa 

<1.3 4187.8 7367 1.25 0.63 36.02 4.15 

1.3–1.4 2864.0 7021 3.35 0.66 32.14 4.33 

1.4–1.5 310.0 5939 18.78 1.33 27.54 2.55 

1.5–1.6 102.3 5547 23.83 1.66 26.87 2.80 

1.6–1.7 111.9 4911 30.54 1.91 25.98 2.65 

1.7–1.8 91.3 4177 39.94 1.93 25.17 2.35 

1.8–1.9 80.9 3462 47.43 1.74 24.00 2.29 

>1.9 1051.8 762 82.20 1.72 13.05 1.14 
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Table 2. Data for size fraction 1.00–3.15 mm – coal, type 34.2 

Density 
[Mg/m3] 

Mass 
[g] 

Combustion heat 
[cal] 

Ash contents 
[%] 

Sulfur 
contents [%]

Volatile parts 
contents 

Va 

Analytical 
moisture  

Wa 

<1.3 1803.0 8345 1.10 0.31 31.87 0.85 

1.3–1.4 794.0 8032 3.70 0.38 26.52 0.88 

1.4–1.5 83.3 6972 14.70 0.60 25.66 0.64 

1.5–1.6 40.6 5971 24.20 0.84 24.30 0.80 

1.6–1.7 25.0 5093 31.60 0.42 25.48 0.42 

1.7–1.8 20.8 4571 37.00 0.86 22.08 0.56 

1.8–1.9 6.7 4228 40.20 0.96 24.77 0.63 

>1.9 213.7 887 79.30 0.89 13.75 0.55 

Table 3. Data for size fraction 1.00–3.15 mm – coal, type 35 

Density 
[Mg/m3] 

Mass 
[g] 

Combustion heat 
[cal] 

Ash contents 
[%] 

Sulfur 
contents [%]

Volatile parts 
contents 

Va 

Analytical 
moisture  

Wa 

<1.3 3476.2 8297 2.22 0.38 21.94 1.07 

1.3–1.4 791.1 7781 7.84 0.46 19.56 0.85 

1.4–1.5 264.7 6836 17.61 0.51 18.65 0.97 

1.5–1.6 119.2 5830 27.70 0.62 18.22 0.93 

1.6–1.7 117.0 5029 35.57 0.66 17.40 1.05 

1.7–1.8 92.1 4222 43.45 0.76 16.99 1.08 

1.8–1.9 72.9 3516 50.64 0.74 16.12 1.16 

>1.9 1422.2 630 81.31 0.35 11.53 1.05 

Searching for significant coal features  

With a view to checking the relations between individual coal features, the partial 
correlation matrix was calculated for each type of coal. For each matrix the data 
concerning each particle density-size fraction (9 size fractions  8 density fractions = 
72 data), for coal type 34.2 several measurements were performed, which resulted in 
the number of the data = 61 in this case) for each type of investigated coals. The 
correlation matrices were presented in Tables 4–6.  
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Table 4. Correlation matrix for coal type 31 

 

Density  
[Mg/m3] 

Mass 
[g] 

Combustion 
heat  
[cal] 

Ash 
contents 

[%] 

Sulfur 
contents 

[%] 

Volatile parts 
contents 

Va 

Analytical  
moisture Wa 

Particle 
size 

d 

Density 
 [Mg/m3] 

1.00 –0.22 –0.92 0.92 0.53 –0.81 –0.86 –0.08 

Mass 
[g] 

–0.22 1.00 0.21 –0.19 –0.29 0.21 0.21 –0.29 

Combustion 
heat [cal] 

–0.92 0.21 1.00 –0.97 –0.36 0.89 0.89 –0.08 

Ash contents 
[%] 

0.92 –0.19 –0.97 1.00 0.36 –0.93 –0.92 0.06 

Sulfur contents 
[%] 

0.53 –0.29 –0.36 0.36 1.00 –0.24 –0.37 –0.31 

Volatile parts 
contents 

Va 
–0.81 0.21 0.89 –0.93 –0.24 1.00 0.86 –0.03 

Analytical 
moisture Wa 

–0.86 0.21 0.89 –0.92 –0.37 0.86 1.00 –0.10 

Particle size d –0.08 –0.29 –0.08 0.06 –0.31 –0.03 –0.10 1.00 

Table 5. Correlation matrix for coal type 34.2 

 

Density  
[Mg/m3] 

Mass 
[g] 

Combustion 
heat [cal] 

Ash  
contents 

[%] 

Sulfur 
contents 

[%] 

Volatile parts
contents 

Va 

Analytical 
moisture  

Wa 

Particle 
size 

d 

Density  
[Mg/m3] 

1.00 –0.47 –0.96 0.93 0.20 –0.70 –0.44 –0.08 

Mass 
[g] 

–0.47 1.00 0.37 –0.35 –0.30 0.29 0.06 –0.18 

Combustion  
heat [cal] 

–0.96 0.37 1.00 –0.99 –0.12 0.82 0.42 0.01 

Ash contents  
[%] 

0.93 –0.35 –0.99 1.00 0.12 –0.85 –0.41 –0.02 

Sulfur contents [%] 0.20 –0.30 –0.12 0.12 1.00 –0.05 –0.12 –0.29 

Volatile parts  
contents 

Va 
–0.70 0.29 0.82 –0.85 –0.05 1.00 0.29 –0.07 

Analytical  
moisture Wa 

–0.44 0.06 0.42 –0.41 –0.12 0.29 1.00 0.44 

Particle size d –0.08 –0.18 0.01 –0.02 –0.29 –0.07 0.44 1.00 
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Table 6. Correlation matrix for coal type 35 

 

Density  
[Mg/m3] 

Mass 
[g] 

Combustion
 heat 
 [cal] 

Ash  
contents

 [%] 

Sulfur 
contents

 [%] 

Volatile parts 
contents 

Va 

Analytical 
moisture  

Wa 

Particle 
size 

d 

Density 
[Mg/m3] 

1.00 –0.14 –0.98 0.97 0.30 –0.88 0.32 –0.08 

Mass 
[g] 

–0.14 1.00 0.05 –0.04 –0.40 0.02 –0.18 –0.28 

Combustion  
heat [cal] 

–0.98 0.05 1.00 –1.00 –0.15 0.93 –0.29 0.04 

Ash  
contents [%] 

0.97 –0.04 –1.00 1.00 0.13 –0.94 0.28 –0.04 

Sulfur  
contents [%] 

0.30 –0.40 –0.15 0.13 1.00 0.01 0.18 –0.10 

Volatile parts 
contents 

Va 
–0.88 0.02 0.93 –0.94 0.01 1.00 –0.21 0.05 

Analytical  
moisture Wa 

0.32 –0.18 –0.29 0.28 0.18 –0.21 1.00 0.55 

Particle size d –0.08 –0.28 0.04 –0.04 –0.10 0.05 0.55 1.00 

It is worth looking at statistical description of the considered random variables. 
Their characteristics were presented in Tables 7–9.  

Table 7. Statistical description for coal 31 

Parameter 
Mass 
[g] 

Combustion 
heat 
 [cal] 

Ash  
contents 

 [%] 

Sulfur  
contents 

 [%] 

Volatile parts 
contents 

Va 

Analytical 
moisture Wa 

mean value 502.84 4827.68 30.59 1.14 26.13 2.88 

standard 
deviation 

859.77 1928.20 22.80 0.49 6.58 0.94 

skewness 2.71 –0.71 0.97 0.54 –1.03 –0.21 

curtosis 7.47 –0.14 0.48 –0.77 0.72 0.02 

max 4187.80 7518.00 86.59 2.28 37.04 5.41 

min 7.10 433.00 1.25 0.39 9.30 0.91 

interval 4180.70 7085.00 85.34 1.89 27.74 4.50 
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Table 8. Statistical description for coal 34.2 

Parameter 
Mass 
[g] 

Combustion 
heat 
 [cal] 

Ash  
contents  

[%] 

Sulfur  
contents 

 [%] 

Volatile parts 
contents 

Va 

Analytical 
moisture  

Wa 

mean value 170.46 5515.98 27.86 0.57 24.66 0.94 

standard 
deviation 

345.01 2390.50 23.89 0.35 5.66 0.28 

skewness 3.60 –0.75 1.03 1.29 –1.48 0.35 

curtosis 14.49 –0.22 0.35 2.27 1.58 0.75 

max 1817.90 8367.00 81.97 1.81 31.87 1.87 

min 2.20 591.00 0.79 0.05 9.77 0.37 

interval 1815.70 7776.00 81.18 1.76 22.10 1.5 

Table 9. Statistical description for coal 35 

Parameter 
Mass 
[g] 

Combustion 
heat 
 [cal] 

Ash  
contents  

[%] 

Sulfur  
contents 

 [%] 

Volatile parts 
contents 

Va 

Analytical 
moisture  

Wa 

mean value 367.64 5418.26 31.60 0.56 17.65 1.27 

standard 
deviation 

631.53 2286.93 23.40 0.247 2.82 0.18 

skewness 3.14 –0.67 0.73 1.09 –1.19 –0.005 

curtosis 10.91 –0.27 –0.19 1.06 1.004 –0.58 

max 3476.20 8383.00 82.02 1.26 22.18 1.65 

min 21.00 600.00 1.84 0.18 10.60 0.85 

interval 3455.20 7783.00 80.18 1.08 11.58 0.80 

From the correlation analysis results it is clearly visible that the most correlated 
coal features are density, combustion heat, ash contents and volatile parts contents. It 
is presumed then that for coal type identification it is not necessary to choose all of 
these features, but only one of them. To perform the multidimensional analysis of the 
data presented above, which describes coal parameters, the observational tunnels 
method was applied. Each of seven dimensions was treated as one. At the beginning, it 
was examined whether the information contained in all parameters is sufficient to the 
correct identification of coal type (Niedoba and Jamroz, 2013). As a result, the 7-
dimensional space was created. It turned out that the accepted parameters were 
sufficient for proper identification if a given sample originated from coal type 31, 34.2 
or 35. Figure 3 shows an example of experiment result considering data from all types 
of coal: 34.2 (61 samples), 35 (72 samples) and 31 (72 samples). From this it occurs 
that the data representing coal of type 35 is located in other part of the space than data 
representing coal of type 34.2. However, it is impossible to conclude about possibility 
of separation of coal of type 31. Furthermore, it was impossible to achieve one view 
from which the conclusion about proper identification of each of three analyzed types 
of coal was possible. Only joined conclusions occurring from several views allowed to 
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state this (Niedoba and Jamroz, 2013). It proves that the nature of analyzed data is 
complicated.  

 

Fig. 3. Obtained view which shows that 7-dimensional data for coal 35 (“circles”)  
gather in other part of the space than coal 34.2 (“pluses”). From this view it is not possible  

to conclude about possible separation of coal of type 31 (×) 

Next, the last parameter, ”analytical moisture”, was deleted from the set of data. 
Consequently, the six-dimensional space was created. The Figs 4–5 show the 
experimental results for 6-dimensional data created in this way. From the view 
obtained in Fig. 4 it can be seen that the data concerning coal type 31 is located in 
other part of the space than coal type 35. On this basis it can be stated that the 
accepted parameters are sufficient to identify properly if certain sample origins from 
coal type 31 or 35. On the basis of this figure it is impossible to conclude about 
possible separation of the coal of type 34.2. In Fig. 5 the obtained view made it 
possible to state that the data concerning coal type 35 is located in other part of the 
space than coal type 34.2. It is possible then to state that the accepted parameters are 
sufficient for the proper identification whether certain sample origins from coal type 
35 or 34.2. However, it was impossible to get the view from which the conclusion 
could be made that data concerning coal type 31 is located in other part of the space 
than coal of type 34.2. So, it is impossible to accept that these parameters are 
sufficient to the proper identification of coal type.  

As it was noticed before, the seven-dimensional data created from the seven coal 
features described above is sufficient to the proper identification of coal type, but the 
same data is not sufficient for this purpose after removal of the parameter “analytical 
moisture”. The conclusion is that the parameter “analytical moisture” is essential to 
the proper identification of coal type. It was the reason for constructing the next set of 
data on the basis of this parameter.  
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Fig. 4. View of 6-dimensional set of data created after removal of parameter „analytical moisture”. 
 It is visible that the data representing coal of type 35 (“circles”) is located in other part  

of the space than data representing coal type 31 (“crosses”). From this view it is not possible 
 to conclude about possible separation of coal of type 34.2 (+) 

 

Fig. 5. View of 6-dimensional data created after the removal of parameter „analytical moisture”.  
It is visible that the data representing coal type 35 (“circles”) is located in other part of the space  

than data representing coal type 34.2 (“pluses”). From this view it is not possible to conclude about 
possible separation of coal of type 31 (×) 

Based on correlation matrix results, 4 coal features were removed from the seven-
dimensional set of data presented above and only 3 parameters left: analytical 
moisture, sulfur contents and volatile parts contents. Each of these parameters was 
treated as one dimension. Therefore, the three-dimensional space was created. Figures 
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6–7 present the results of these experiments. From the view obtained in Fig. 6 it can be 
seen that data concerning coal type 31 is located in other part of the space than coal 
type 35. On this basis it can be stated that the accepted parameters are sufficient for 
the proper identification if certain sample origins from coal type 31 or 35. On the basis 
of this figure it is impossible to conclude about possible separation of coal of type 
34.2. Based on the view obtained in Fig. 7 it can be stated that data concerning coal 
type 34.2 is located in other part of the space than coal type 35 and simultaneously in 
other part of the space than coal type 31. From these two views, it can be concluded 
that the accepted parameters are sufficient to identify properly if certain sample 
origins from coal type 31, 34.2 or 35. At the same time it was impossible to get one 
view from which such conclusion could be made. It can be the proof that the structure 
of analyzed data is complicated.  

 

Fig. 6. View of 3-dimensional data: analytical moisture, sulfur contents and volatile parts contents.  
It is visible that the data representing coal type 35 (“circles”) is located in other part of the space than  

data representing coal type 31 (“crosses”). From this view it is not possible to conclude 
 about possible separation of coal of type 34.2 (+) 

Next, it was decided to examine the influence of potential replacement of one of 
the coal features with another one highly correlated with it. The correlation index of 
“volatile parts contents” parameter was equal to 0.93 with parameter “combustion 
heat” for coal type 31, 0.82 for coal type 34.2 and 0.89 for coal type 35 (see: Tables 4–
6). They are parameters highly related to each other. That is why in a set of three coal 
features (analytical moisture, sulfur contents and volatile parts contents), which are 
sufficient for the correct identification of coal type as shown above, the parameter 
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Fig. 7. View of 3-dimensional data created from features: analytical moisture, sulfur contents and volatile 
parts contents. It is visible that the data representing coal type 34.2 (”pluses”) is located in other part of 

the space than data representing coal type 31 (“crosses”) as well data representing coal type 34.2 
(“pluses”) is located in other part of the space than data representing coal type 35 (“circles”) 

“volatile parts contents” was replaced with parameter “combustion heat”. Figures 8-9 
present the obtained results. The view obtained in Figure 8 allows to state that data 
concerning coal type 31 is located in other part of the space than coal type 34.2, and at 
the same time it is located in other part of the space than coal type 35. On this basis it 
can be said that the accepted parameters are sufficient to the proper identification if a 
particular sample originates from coal type 31 or not. All the same, it was impossible 
to find a view stating that the data concerning coal type 34.2 is located in other part of 
the space than coal type 35. The best obtained view concerning the possibility of 
separating the data into coals types 34.2 and 35 was shown in Figure 9. I occurs from 
it that the accepted parameters are sufficient to proper identification if the sample 
origins from coal of type 31 or 34.2. It cannot be said then that these three accepted 
parameters are sufficient to the proper identification of the type of coal. It proved that 
as a result of replacement of parameter “volatile parts contents” with “combustion 
heat”, the information allowing for the proper identification of coal type was lost. It 
occurred despite the high value of correlation index between these two coal features.  
Similarly, the parameter „volatile parts contents” was replaced with parameter “ash 
contents”. The correlation index between these two features was high and was equal to 
–0.94 for coal type 31, –0.85 for coal type 34.2 and –0.93 for coal type 35 (see: Tables 
4–6). Consequently, the set of three parameters was created: analytical moisture, 
sulfur contents and ash contents. The view presented in Figure 10 allows to state that 
data concerning the coal type 31 is located in other part of the space than data 
concerning coal type 34.2 and at the same is located in other part of the space than 
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Fig. 8. View of 3-dimensional data created from features: analytical moisture, sulfur contents  
and combustion heat. It is visible that data representing type coal 31 (“crosses”) is located  
in other part of the space than data representing coal type 34.2 (“pluses”) and other part  

of the space than data representing coal type 35 (“circles”) 

 

Fig. 9. View of 3-dimensional data created from features: analytical moisture, sulfur contents  
and combustion heat. The best view does not allow to state if the data representing type coal 34.2 

(“pluses”) can be separated from the data representing type coal 35 (“circles”) – sets of points 
representing these two types overlap. It can be stated that the accepted parameters are sufficient to proper 

identification if certain sample origins from coal of type 31 (“crosses”) or 34.2 (“pluses”)  

data concerning coal type 35. On this basis, similarly to the previous case, it can be 
stated that the accepted set of parameters is sufficient for the correct identification if 
certain sample originates from coal type 31 or not. All the same, it was impossible to 
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find a view allowing to state that the data concerning coal type 34.2 is located in other 
part of space than the data concerning coal type 35. The accepted parameters are then 
not sufficient for the proper identification of the type of coal. This proved that the 
replacement of the parameter “volatile parts contents” with parameter “ash contents” 
also resulted in a loss of information allowing for the proper identification of all three 
coal types despite the high value of correlation index between replaced coal features.  

 

Fig. 10. View of 3-dimensional data created from features: analytical moisture, sulfur contents  
and ash contents. It is visible that data representing coal type 31 (“crosses”) is located in other  

part of the space than data concerning coal type 34.2 (“pluses”) and other part of the space  
than data representing coal type 35 (“circles”) 

Conclusions  

The visualizations of multidimensional data made it possible to arrive at the following 
conclusions: 
 6-dimensional data created as a result of removal of the parameter “analytical 

moisture” is not sufficient for the proper identification of coal type. They only 
allow to recognize coal types 35 and 31 as well 35 and 34.2 in pairs  

 the parameter “analytical moisture” is crucial to the proper identification of coal 
type. Without this parameter, it would have been impossible to recognize the type 
of coal successfully  

 three-dimensional data created from parameters: analytical moisture, sulfur 
contents and volatile parts contents are sufficient for the proper identification of 
coal type 

 replacement of one of the parameters in coal features set with other highly 
correlated parameter does not guarantee to save the information necessary for the 
identification of coal type 
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 the system features, including analytical moisture, sulfur contents and combustion 
heat as well analytical moisture, sulfur contents and ash contents are not sufficient 
for the proper identification of coal type.  
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